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Abstract. The method of symmetry adaptation of wavefunctions with respect to any 
semisimple symmetry chain originating from a SU(/+ 1) algebra for completely symmetrical 
representations [NI of SU(/+I l  is extended 10 the ease of arbitrary representations 
[NI, NI,. . . , Ng+,] ol SU(I+ I1 with N,* N22.. .a N,,, and N , +  N2+. . .+ N,+l= N. 

1. Introduction 

In  a previous paper [l] we discussed a method for the symmetry adaptation and the 
determination of matrix elements according to an arbitrary semisimple symmetry chain 
originating from a unitary algebra SU(/+ 1). A computer implementation of this method 
is available meanwhile [Z]. The method in [ I ]  is, however, limited to the case of 
completely symmetric representations of SU( I +  1). 

In the present paper we deal with the case of representations of SU(I+I) which 
correspond to an arbitrary symmetry of the symmetric group SN. That is, we consider 
representations whose states (wavefunctions) transform with respect to the pair 
(SU(l+l) ,S,) ,  where / + 1  equals the number of distinct quantum states of single 
particle states, while N is equal to the number of (independent) particles from which 
the composite state is formed. It turns out that only minor modifications of the method 
described in [ I ]  are necessary for this general case. Since the method itself remains 
essentially unchanged, we concentrate on these modifications in the following. 

In [I]  then, given a set of I +  1 single particle states and N particles, each state of 
the representation SU(I+ 1) was completely symmetric with respect to an exchange of 
the N particles. In the present article we consider representations of SU(/+I)  for 
which each state transforms like a state of an arbitrary, but fixed, irreducible representa- 
tion of S N .  This is equivalent to stating that we discuss the case of an arbitrary finite 
dimensional irreducible representation of SU(I+ 1) in an independent wavefunction 
(independent particle) picture. Direct products SU(I, + l)OSU(I,+l)O.. . -. , . are 
treated in an analogous manner. 

It should be pointed out that the method presented in [I] and in this article is not 
restricted to the Gel’fand-Zetlin basis chains, which have already been discussed in 
great detail (e.g. [3,4]), but is also valid for any other semisimple symmetry chain. 
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2. Definitions 

In [l] the completely symmetrical representations of SU(I+ 1) were discussed which 
are characterized by the partition 

[N, 0, .  . . ,O]= [ N I  
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where the number N of single particle wavefunctions is followed by I zeros. An 

integers (a weight) 
arbitrary state of [.NI is !hen (ufiiqxe!y) characterized by the seq~efir: nf zoz-negatiye 

I + ,  
[ n , , n 2 , . . . , r h + , l  n i = N .  

, = I  

Now, an irreducible representation of S U ( I + l )  is characterized by a partition of N 
into non-negative integers N. such that 

It1 

[ N I , N ~ , . . . ~ N I + ~ I  N, 3 N 2 8 .  . .* N,,, z N ,  = N. 
i = ,  

An arbitrary state of this representation is again characterized by weights of the type 
I+, 

[nl, n2, .  . . , n,+J n i = N  
! = I  

but now 
( a )  there are subsidiary conditions on the nj, and 
( b )  a given partition (weight) can correspond to more than one state (i.e. uniqueness 

is lost). 
We do not need to discuss ( a )  and (b ) ,  since our method resolves both problems 

in a natural and automatic manner. 
The completely symmetrical representations of [ I ]  form a special case of the 

representations considered in the present work, with multiplicity of weights equal to 
1. The sets of weights (weight diagrams) of the representations considered here form 
subsets of the sets of weights of the completely symmetrical representations [NI of 
[l] ,  and their multiplicity is 31. 

3. Symmetry adaptation and matrix elements 

Starting with the (unique) state which corresponds to a highest weight of a finite 
dimensional irreducible representation of SU(/+ l ) ,  which is either [ N I  (for the case 
of completely symmetrical representations) or [NI, N 2 , .  . . , N,,,], with N,> 0 (for 
the not completely symmetrical representations), the action of the (simple) lowering 
operators of SU(I+l )  generates a state which corresponds to a lower weight (unless 
the state is mapped to zero). This state is uniquely characterized for representations 
[NI, while this is not the case for the not completely symmetrical representations with 
N2 > 0. However, from the invariance and irreducibility of the representations it follows 
that the action of the (simple) lowering operators yields a set of states which spans 
the subspace associated with any given weight. (This is analogous to the problem 
encountered in [ l ]  for the case of non-completely symmetrical representations of 
subalgebras of SU(I+ l).) Orthonormalization then yields an orthonormal basis for 
the weight subspace, as well as the matrix elements for the action of the lowering 
operators. 
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What needs to be determined is thus the unique state (weight function) which 
corresponds to the highest weight of an arbitrary representation [ N , ,  N 2 , .  . . , NI,,~ 
of SU(I+l) .  This is achieved by constructing a N-particle wavefunction from N I  
wavefunctions of type 1, N2 wavefunctions of type 2, etc., which obeys the symmetry 
[NI,  N 2 , .  . . , NI,,]  of the symmetric group S,. The procedure used to construct such 
a wavefunction is standard and well known [ 3 , 5 - 8 1 .  Since the irreducible representa- 
tions of SN may have dimensionality greater than 1 ,  one obtains in general different 
realizations of a given SU(I+ 1) representation. Acomplete set of equivalent realizations 
of the same representation [ N , ,  N2,. . . , N I + , ]  of SU(/+ 1) then forms a basis for the 
representation [ N , ,  N 2 , .  . . , N,,,]  of S,. 

For the case of the completely symmetrical representations [ N I  of SU(I+l )  con- 
sidered in [ I ]  the limits of a weight diagram are always given by the vanishing of the 
matrix elements of the lowering (or raising) operators. For the general case of rep- 
resentations of arbitrary symmetry the limit of a weight diagram can also be given by 
the vanishing of a wavefunction, while the matrix element remains finite and non-zero. 
This is a consequence of the non-trivial symmetry of wavefunctions in this general case. 

Due to the nature of the completely symmetrical representations [NI of SU(I+l )  
a boson operator calculus can be introduced. That is, boson creation operators b t  and 
boson annihilator operators bi with i = 1,2 , .  . . , I +  1 are introduced by means of which 
both the algebra SU(/+  1)  and the states of its completely symmetrical representations 
can be realized: 

E ( e j  - e ; )  = b:b; 

where the b:, b, satisfy the familiar commutation relations 

[b.,b,I=O [b , ,  b:l= 8,. 

Moreover we assume that the b, acting upon the vacuum state 10) (the identity 1 in 
the algebra) yield zero: 

b, 10) b, 1 = 0 

With this, the action of a boson creation and annihilation operator pair upon a state 
[ n l ,  n 2 , .  . ., n l + , ]  is straightforward: 

1 1 
(b t ) ' ,  . . , - ( b J )  "J . . . 1 Jn,! 

= v s ; W [ n  I , . . . ,  f l - 1 ,  ..., ! ,+I  , . . . ,  f l l + , ]  

Obviously the states [ n l ,  n 2 , .  . . , n,,,] can never disappear, and it is the zero matrix 
elements which limit the representation. 
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For the general case of a representation [N,, Nzr . . . , N,, , ]  of SU(l+ I ) ,  which is 
the scope of this paper, this simple boson picture does not apply. In order to treat the 
general situation we consider the N bosons to be inequivalent, i.e. to be labelled: 

b t (k ) '  k = 1 , 2  ,_ . . ,  N. 

Furthermore we assume the Lie products 

[b i (k ) ,  bj(s) l=O [ b t ( k ) ,  bJ(s)l=&,& 
and 

bi(k)lO) b,(k)l '"  = 0. 

That is, we are dealing with a direct product b t ( k ) O b : ( s )  = b t (k )b?( s )  of Nindepen- 
dent and inequivalenf bosons, 

b t ( l ) b t ( 2 ) .  . . bt(n,)b:(n,  + 1 ) .  . . b f ( n ,  + nz )  . . . b:(n, + n, +. . .+ n, = N )  

with i < j < . . . < s, i, j ,  . . . , s = 1 , 2 , .  . . , I + 1 ,  and the notation 

b:,,,(particle). 

For this direct product the shift operators are given as 

E~(e,-ei)=E'l ' (ej-ej)+E'Z'(e , -e , )+. .  .+E'"(e,-e,)  

with E'"(ej-  e ; )  = b:(k)bi(k) ,  where we have used the simplifying standard notation 
of ignoring the identity operators 1'": Acting with a shift operator upon a properly 
symmetrized and normalized state {. . .) corresponding to the weight m = 
( m I , m 2 , . . . , m , + , ) ,  we obtain (with r a n + n ,  and b , (n+ l ) l '"+ l '=O) :  

E@(e,  - e , ) { .  . . b t ( n  + l ) b t ( n  + 2 ) .  . , b t ( n  + a ) .  . . b?(r+ l ) b : ( r + 2 ) .  . . b:(r+ n,) . . .} 
= {. . . [ ( b t ( n + l ) b t ( n  +2)1"')+l'"+'')b:(n+ l ) b t ( n + 2 ) .  . . b t ( n +  ni) 

+ b:(n + l)b:(n + 2 )  . . . b t ( n  + ni) 

+ b t ( n + l ) b t ( n + 2 ) .  . . b:(n+n()] .  . . 
.. . b f ( r + l ) b f ( r + 2 )  ... b f ( r + n , )  ...) for ni > 0 

and 

€ @ ( e j -  ej){. . . b t ( n  + l ) b t ( n  + 2 ) .  , . b t ( n +  ni)  , .. b r ( r +  l ) b f ( r + 2 )  .. . b ? ( r + n j ) .  . .] 
= O  for ni = 0. 

The resultant state, if non-zero, belongs to weight m + e j - e , .  Normalization of a, 
non-zero state of the above form yields the matrix element of the operator E@(ej  - et) 
between the two states. 

As pointed out before, the resultant state may in fact be the zero state. This will 
happen if the various terms of the linear combination which make up the state add 
up to zero. (In the general expression given above only one such term was considered.) 

This generalization of the boson operator calculus yields all finite dimensional 
irreducible representations [ N , ,  N z ,  . . . , NI+,] with N, 3 N2 2. . . a  NI+, and NI + Nz+ 
, . .+NI+,  = N for the algebras SU(l+ 1 ) .  Having obtained the properly symmetrized 
states for the representations of S U ( l + l )  with respect to S N  in this manner, the 
symmetrization according to a semisimple symmetry chain originating from SU(I+ 1 )  
follows the familiar pattern described in [ l ] .  
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For the completely symmetrical representations [NI  of SU(I+ 1) we obtain from 
the generalized boson calculus the familiar result by ‘collapsing’ the states, i.e. by 
making the bosons equivalent. This is achieved by dropping the labels k, 

bf(k) t* b f .  

Inserting the numerical factors which are needed for the normalization (to 1) of the 
boson states [91, we then obtain the familiar result for the case of completely symmetrical 
representations [NI of SU(I+ 1); all other representations [ N , ,  N 2 , .  . . , N,,,] with 
N2 > 0 collapse to zero in this case. 

A computer code for this general case of the arbitrary representations 
[ N I ,  N 2 ,  .. . , Nf+,]ofSU(I+ 1) hasheendeveloped[lO]andwillbeavailablesoon[ll]. 
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